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Abstract. The analytical solution of electron-acoustic solitary waves (EASWs)
are reported for an unmagnetised quantum plasma model considering the ef-
fect of external periodic force. Using reduction perturbation technique (RPT)
forced Korteweg-de-Vries equation is obtained. The effect of different physical
parameters such quantum diffraction parameter (H), speed of travelling wave
(λ ), peak value of frequency ( f0) and the frequency (w) of external periodic
force are observed. This paper may be useful to the non linear features of
EASWs in quantum plasma in the presence of external periodic force.
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I. INTRODUCTION

Electron acoustic solitary waves (EASWs) are currently being considered as a ma-
jor interdisciplinary research field in plasma physics. EASWs are the low frequency
branch of electrostatic plasma waves. EASWs exist in neutralized plasmas, pure elec-
tron plasmas and pure ion plasmas. EASWs appear in space and laboratory plasmas
[1-3] where two distinct electron populations exist, i.e. cool and hot electron. The lin-
ear and nonlinear properties of EASWs in unmagnetised and also magnetised plasma
have been investigated by many authors. Javidan and Pakzad [4] noticed small ampli-
tude analysis of weakly nonlinear EASWs in a three component magnetized plasma
with kappa distributed hot electrons. Tribeche and Djebarni [5] investigated arbitrary
amplitude EASWs in a plasma having cold fluid electrons. Sah et.al. [6] investigated
in a three component unmagnetised dense quantum plasma consisting of two distinct
groups of electrons and using RPT to obtained KdV equation. Iqbal et al. [7] ob-
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served the non linearity of spin EASWs in spin polarized degenerate quantum plasma.
Masood et al. [8] studied the EASWs in a quantum magnetoplasma and they derived
ZK equation by using the RPT. They observed that the magnetic field exhibits the
wave dispersion through weakly transverse and longitudinal direction in the ZK equa-
tion. Sayed et al. [9] obtained the time-fractional KdV equation by using the RPT
for EASWs in quantum plasma of two different temperature isothermal ions. In some
physical phenomena [10-12], the effect of external periodic force is present. Sen et al.
[13] obtained the FKdV equation from a plasma model. They considered the forcing
term as a source of charge density scenario. Recently Ali et al. [14] observed an an-
alytical solution for EASWs in the presence of periodic force. Till today no work has
been reported in the field of quantum plasma area where the external periodic force
is applied. This is the main motivation of this work to noticed the effects of external
periodic force on the propagation of EASWs. In this paper our main objective is to
derive FKdV equation in EASWs in presence of external periodic force and observed
the effects of various physical parameters on the analytical solution of EASWs

The rest of this paper is composed as follows: In Section II, we consider the basic
equations. We derived Forced KdV equation using RPT in Section III. In Section IV,
we obtain numerical results and present discussions. Section V presents conclusions.

II. BASIC EQUATIONS

The normalized basic equations are [15]
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where nec and neh are the number densities, vec is the cold electron velocity, φ is the

electrostatic potential, csh =

√
2kBTFeh

me
is the acoustic speed of quantum hot electron

and ωec =
√

nec0e2

ε0me
is the plasma frequency, kB is the Boltzmann constant, TFeh is the

Fermi temperature for hot electron, ε0 is the permitivity of free space, nec0 is the num-
ber density of cold electrons and e, me are electronic charge and mass respectively.
The non-dimensional quantum parameter H is defined as H =

√
δ

h̄ωeh
2kBTFeh

, where h̄
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represents Planck’s constant and ωeh =
√

neh0e2

ε0me
is the hot electron plasma frequency.

The neutrality condition is δ = δ1−1, where δ = nec0
neh0

, δ1 =
zini0
neh0

, ni0 and neh0 are the
equilibrium number densities of ions and hot electrons respectively.Considering the
boundary conditions neh→ 1, ∂neh

∂x → 1, and φ → 0 at ±∞ and integrating Eqs.(4) we
have
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III. DERIVATIVE OF FORCED KdV EQUATION

The independent variables are stretched as

ξ = ε
1/2(x−λ t) (7)

τ = ε
3/2t (8)

We make the following perturbation expansion of the field variables:
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(0)+

∞

∑
n=1

ε
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ψ
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where ψ = (nec,neh,vec,veh,φ) and ψ(0) = (1,1,0,0,0). We get the dispersion relation
after equating the lowest order in ε as,
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We collect the higher order term,
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Further we proceed for the next higher order terms and we get the following equations,

2λ
2 ∂ 2V (3)
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Integrate the above equation w.r.t. ξ and rearranging all the term and we get the well
known KdV equation.
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where A = λ
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3
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4λ 4 ].

Now in presence of external periodic force in the system i.e. f0cos(wt), then Eq. (17)
takes the form
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here f0 is the peak value of the external periodic force and w is the frequency of pertur-
bation. The Eq. (18) is known as the FKdV equation. If f0 = 0 then Eq. (18) becomes
Eq. (17) and it’s solution is given bellow,

φ = φmSech2
(
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W

)
(19)

where φm = 3M
A is the amplitude and W = 2

√
B
M is the width of the wave, M is the

normalized constant speed of the wave frame.

Already we know that when f0 = 0, the quantity I =
∫
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quantity for the FKdV Eq. (18) but in presence of the small external impressed force
we get
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Now,
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From Eqs. (22) and (26), the value of M(τ) is calculated as,

M(τ) = M+
2A f0

3w
sin(wτ) (26)

So the analytical solution of EASWs for the FKdV Eq. (18) is,

φ = φmSech2
(

ξ −M(τ)τ

W (τ)

)
(27)

here φm(τ) =
3M(τ)

A and W (τ) = 2
√

B
M(τ) .

IV. NUMERICAL RESULTS AND DISCUSSION

For small amplitude analysis we have plotted a number of graphs. The different
physical parameters such quantum diffraction parameter (H), speed of travelling wave
(λ ), peak value of frequency ( f0) and the frequency (w) of external perturbation on
the solitary wave solution of the FKdV (Eq. (18)) have been observed critically in
this section. Now using the above parameters we have plotted various solitary wave
profile.

We have plotted the solitary wave profile (Fig. 1) i.e. variation in the solitary
wave solution of the FKdV (Eq. (18)) for different values of strength of the periodic
force ( f0) with fixed values of other parameters w = 0.5, H = 0.2, λ = 1, τ = 1 and
M = 2. It is seen that when the strength of the force increases, amplitude of the EASWs
decreases but width increases.

Variation of the solution of EASWs of the FKdV equation with quantum diffraction
parameter H is presented in Fig. 2 and other parameters are same as in Fig. 1. It is
critically observed that when H increases, the amplitude of EASWs is near about same
but width of the solitary wave decreases. In Fig. 3 we have plotted the variation of
the solitary wave solution of the FKdV equation for different values of the frequency
(w) of the external periodic force and other parameters are same as in Fig. 1. It is
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FIGURE 1. Variation in the solitary wave solution of the forced KdV equation (18) for different values of f0 with
λ=1, H=0.2, M=2, w=0.5, and τ=1.

FIGURE 2. Variation in the solitary wave solution of the forced KdV equation (18) for different values of H with
λ=1, f0 =1, M=2, w=0.5, and τ=1.

critically observed that when w = 2.80 then the amplitude of solitary wave is large
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FIGURE 3. Variation in the solitary wave solution of the forced KdV equation (18) for different values of w with
λ=1, H=0.2, f0=1,M=2, and τ=1.

and when w = 0.10 then the amplitude of solitary wave is small. So it is found that
when w increases then the amplitude and width of the EASWs increases. In Fig. 4,
we have plotted the variation of the solitary wave solution of the FKdV (Eq. (18)) for
different values of λ with other parameters are same as in Fig. 3. It is observed that
when the parameter λ amplitude of EASWs increases, but the width of the solitary
wave decreases. The variation of the amplitude of the solitary wave solution w.r.t. the
various values of frequency of the external periodic force is depicted in Fig. 5 and
other parameters are same as in Fig. 4. It is critically observed that when w = 0.10,
EASWs has larger amplitude than w = 0.80 and w = 1.50. So it is found that when w
increases then the amplitude of the solitary wave decreases rapidly.

In Fig. 6, the variation of amplitude of the solitary wave solution of the forced
KdV (Eq. (18)) with respect to f0 is presented for different values of λ and the other
parameters are same as in Fig. 5. Here we noticed that when λ = 0.40, the EASWs has
larger amplitude but when λ = 1.50 then it has smallest amplitude comparable to the
values of λ = 0.80 and 0.40. So when λ increases, the amplitude of EASWs decreases
rapidly. In Fig.7, we have plotted the variation in the width of the EASWs solution
with respect f0 of the forced KdV (Eq. (18)) is presented for different parameters of
w, and other parameters are same as in Fig. 6. It is noticed that as the parameter w
increases, the width of the EASWs increases rapidly.

In Fig. 8, the variation in the width of the solitary wave solution with respect f0
of the forced KdV (Eq. (18)) is presented for different values of quantum diffraction
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FIGURE 4. Variation in the solitary wave solution of the forced KdV equation (18) for different values of λ with
H=0.2, f0 =1, M=2,w=0.1, and τ=1.

FIGURE 5. Variation in the amplitude of solitary wave solution of the forced KdV equation (18) for different
values of w with respect to f0 for λ=1, H=0.2, M=2, and τ=1.

and the other parameters are same as in Fig. 7. We have noticed that when the quan-
tum parameter H increases the width of the EASWs increases rapidly. In Fig. 9, the
variation in the width of the EASWs solution with respect to f0 of the forced KdV
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FIGURE 6. Variation in the amplitude of solitary wave solution of the forced KdV equation (18) for different
values of λ with respect to f0 for H=0.2, M=2, w=0.1, and τ=1.

FIGURE 7. Variation in the width of solitary wave solution of the forced KdV equation (18) for different values
of w with respect to f0 for λ=1, H=0.2, M=2, and τ=1.

(Eq. (18)) is presented for different values of λ and the other parameters are fixed as
in Fig. 8. It is observed that after crossing the value f0 = 0.75, then the width of the
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FIGURE 8. Variation in the width of solitary wave solution of the forced KdV equation (18) for different values
of H with respect to f0 for λ=1, M=2, w=0.1, and τ=1.

FIGURE 9. Variation in the width of solitary wave solution of the forced KdV equation (18) for different values
of λ with respect to f0 for H=0.2, M=2, w =0.1, and τ=1.

EASWs (λ = 0.50) profile decrease rapidly than λ = 0.60 and λ = 0.70 and at the
point f0 = 0.90 the solitary wave decreases rather than the value of λ = 0.70. So we
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have seen that when λ increases, the width of the EASWs increases rapidly. Thus,
the FKdV equation gives a good estimate of the non linear structures in EASWs in
quantum plasma, in the presence of external periodic force.

V. CONCLUSION

In this PAPER we have theoretically investigated the analytical solution of EASWs
in quantum plasma in presence of external periodic force. Using RPT we have derived
FKdV equation. The effect of different physical parameters such as the speed of trav-
eling wave (λ ),strength ( f0) and frequency (w)of the external perturbation have been
investigated on the analytical solution of the EASWs. The graphs measures the signif-
icant effect of the relevant physical parameters. At last the theoretical result obtained
from this paper may be useful to investigate the non linear phenomena of EASWs in
quantum plasma in the presence of external periodic force.
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