Spectroscopic Properties of Odd-Mass Rare-Earth Nuclei in the HF-BCS Approach Using the Density Dependent delta Interaction

Publication Issue: 
Volume 39, Issue 2, 2018
Page No: 
Date Received: 
Sunday, September 2, 2018
Authors' Name: 
Nor Anita Rezle
Nurhafiza M. N.
Meng-Hock Koh
Authors' Affiliation and Address: 
Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
Pairing correlations play an important role in the description of nuclear properties such as binding energy, odd-even mass staggering (OES) and it continues to be important when going towards extremely deformed nuclear shapes. It is therefore important that pairing is treated in the best way possible within any theoretical framework. In this work, we present an exploratory study investigating the effect of using a pairing interaction called the density dependent delta interaction (DDDI) in the calculation of band-head energies of odd-mass nuclei. In this preliminary work, the pairing strengths were fitted to the OES of (162,163,164)Gd isotopes assuming that the proton and neutron pairing strengths to be similar. Calculations of the odd-mass nuclei were performed by blocking one single-particle state in which its third-component of the single-particle total angular momentum and parity matches the intended experimental nuclear spin and parity. The optimal pairing strength was found to be 1216 MeV fm^3. Theoretical data of intrinsic and spectroscopic quadrupole moment, magnetic moment and band-head for odd-mass nuclei are presented. Disagreement between theoretical band-head of (161)Gd with that of experimental data is probably due to its intrinsic nature and to be fixed with rotational correction.
PDF icon JFM2018_V39No2_30046.pdf468.03 KB